Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The rapid advancement of large-scale cosmological simulations has opened new avenues for cosmological and astrophysical research. However, the increasing diversity among cosmological simulation models presents a challenge to therobustness. In this work, we develop the Model-Insensitive ESTimator (Miest), a machine that canrobustlyestimate the cosmological parameters, Ωmandσ8, from neural hydrogen maps of simulation models in the Cosmology and Astrophysics with MachinE Learning Simulations project—IllustrisTNG,SIMBA, Astrid, and SWIFT-Eagle. An estimator is consideredrobustif it possesses a consistent predictive power across all simulations, including those used during the training phase. We train our machine using multiple simulation models and ensure that it only extracts common features between the models while disregarding the model-specific features. This allows us to develop a novel model that is capable of accurately estimating parameters across a range of simulation models, without being biased toward any particular model. Upon the investigation of the latent space—a set of summary statistics, we find that the implementation ofrobustnessleads to the blending of latent variables across different models, demonstrating the removal of model-specific features. In comparison to a standard machine lackingrobustness, the average performance of Mieston the unseen simulations during the training phase has been improved by ∼17% for Ωmand 38% forσ8. By using a machine learning approach that can extractrobust, yet physical features, we hope to improve our understanding of galaxy formation and evolution in a (subgrid) model-insensitive manner, and ultimately, gain insight into the underlying physical processes responsible forrobustness.more » « lessFree, publicly-accessible full text available September 19, 2026
- 
            Abstract Cosmological simulations like CAMELS and IllustrisTNG characterize hundreds of thousands of galaxies using various internal properties. Previous studies have demonstrated that machine learning can be used to infer the cosmological parameter Ωmfrom the internal properties of even a single randomly selected simulated galaxy. This ability was hypothesized to originate from galaxies occupying a low-dimensional manifold within a higher-dimensional galaxy property space, which shifts with variations in Ωm. In this work, we investigate how galaxies occupy the high-dimensional galaxy property space, particularly the effect of Ωmand other cosmological and astrophysical parameters on the putative manifold. We achieve this by using an autoencoder with an information-ordered bottleneck, a neural layer with adaptive compression, to perform dimensionality reduction on individual galaxy properties from CAMELS simulations, which are run with various combinations of cosmological and astrophysical parameters. We find that for an autoencoder trained on the fiducial set of parameters, the reconstruction error increases significantly when the test set deviates from fiducial values of ΩmandASN1, indicating that these parameters shift galaxies off the fiducial manifold. In contrast, variations in other parameters such asσ8cause negligible error changes, suggesting galaxies shift along the manifold. These findings provide direct evidence that the ability to infer Ωmfrom individual galaxies is tied to the way Ωmshifts the manifold. Physically, this implies that parameters likeσ8produce galaxy property changes resembling natural scatter, while parameters like ΩmandASN1create unsampled properties, extending beyond the natural scatter in the fiducial model.more » « lessFree, publicly-accessible full text available June 12, 2026
- 
            Abstract The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012≲Mhalo/M⊙≲ 1013, 10 ≲rkpc−1≲ 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted-for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « lessFree, publicly-accessible full text available May 9, 2026
- 
            Abstract The baryonic physics shaping galaxy formation and evolution are complex, spanning a vast range of scales and making them challenging to model. Cosmological simulations rely on subgrid models that produce significantly different predictions. Understanding how models of stellar and active galactic nucleus (AGN) feedback affect baryon behavior across different halo masses and redshifts is essential. Using the SIMBA and IllustrisTNG suites from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project, we explore the effect of parameters governing the subgrid implementation of stellar and AGN feedback. We find that while IllustrisTNG shows higher cumulative feedback energy across all halos, SIMBA demonstrates a greater spread of baryons, quantified by the closure radius and circumgalactic medium (CGM) gas fraction. This suggests that feedback in SIMBA couples more effectively to baryons and drives them more efficiently within the host halo. There is evidence that the different feedback modes are highly interrelated in these subgrid models. The parameters controlling the stellar feedback efficiency significantly impact AGN feedback, as seen in the suppression of black hole mass growth and delayed activation of AGN feedback to higher-mass halos with increasing stellar feedback efficiency in both simulations. Additionally, the AGN feedback efficiency parameters affect the CGM gas fraction at low halo masses in SIMBA, hinting at complex, nonlinear interactions between the AGN and supernova feedback modes. Overall, we demonstrate that stellar and AGN feedback are intimately interwoven, especially at low redshift, due to subgrid implementation, resulting in halo property effects that might initially seem counterintuitive.more » « lessFree, publicly-accessible full text available February 4, 2026
- 
            Abstract We present a study on the inference of cosmological and astrophysical parameters using stacked galaxy cluster profiles. Utilizing the CAMELS-zoomGZ simulations, we explore how various cluster properties—such as X-ray surface brightness, gas density, temperature, metallicity, and Compton-y profiles—can be used to predict parameters within the 28-dimensional parameter space of the IllustrisTNG model. Through neural networks, we achieve a high correlation coefficient of 0.97 or above for all cosmological parameters, including Ωm,H0, andσ8, and over 0.90 for the remaining astrophysical parameters, showcasing the effectiveness of these profiles for parameter inference. We investigate the impact of different radial cuts, with bins ranging from 0.1R200cto 0.7R200c, to simulate current observational constraints. Additionally, we perform a noise sensitivity analysis, adding up to 40% Gaussian noise (corresponding to signal-to-noise ratios as low as 2.5), revealing that key parameters such as Ωm,H0, and the initial mass function slope remain robust even under extreme noise conditions. We also compare the performance of full radial profiles against integrated quantities, finding that profiles generally lead to more accurate parameter inferences. Our results demonstrate that stacked galaxy cluster profiles contain crucial information on both astrophysical processes within groups and clusters and the underlying cosmology of the Universe. This underscores their significance for interpreting the complex data expected from next-generation surveys and reveals, for the first time, their potential as a powerful tool for parameter inference.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            Abstract Recent works have discovered a relatively tight correlation between Ωmand the properties of individual simulated galaxies. Because of this, it has been shown that constraints on Ωmcan be placed using the properties of individual galaxies while accounting for uncertainties in astrophysical processes such as feedback from supernovae and active galactic nuclei. In this work, we quantify whether using the properties of multiple galaxies simultaneously can tighten those constraints. For this, we train neural networks to perform likelihood-free inference on the value of two cosmological parameters (Ωmandσ8) and four astrophysical parameters using the properties of several galaxies from thousands of hydrodynamic simulations of the CAMELS project. We find that using properties of more than one galaxy increases the precision of the Ωminference. Furthermore, using multiple galaxies enables the inference of other parameters that were poorly constrained with one single galaxy. We show that the same subset of galaxy properties are responsible for the constraints on Ωmfrom one and multiple galaxies. Finally, we quantify the robustness of the model and find that without identifying the model range of validity, the model does not perform well when tested on galaxies from other galaxy formation models.more » « less
- 
            Abstract Galaxies are biased tracers of the underlying cosmic web, which is dominated by dark matter (DM) components that cannot be directly observed. Galaxy formation simulations can be used to study the relationship between DM density fields and galaxy distributions. However, this relationship can be sensitive to assumptions in cosmology and astrophysical processes embedded in galaxy formation models, which remain uncertain in many aspects. In this work, we develop a diffusion generative model to reconstruct DM fields from galaxies. The diffusion model is trained on the CAMELS simulation suite that contains thousands of state-of-the-art galaxy formation simulations with varying cosmological parameters and subgrid astrophysics. We demonstrate that the diffusion model can predict the unbiased posterior distribution of the underlying DM fields from the given stellar density fields while being able to marginalize over uncertainties in cosmological and astrophysical models. Interestingly, the model generalizes to simulation volumes ≈500 times larger than those it was trained on and across different galaxy formation models. The code for reproducing these results can be found athttps://github.com/victoriaono/variational-diffusion-cdm✎.more » « less
- 
            Abstract Most diffuse baryons, including the circumgalactic medium (CGM) surrounding galaxies and the intergalactic medium (IGM) in the cosmic web, remain unmeasured and unconstrained. Fast radio bursts (FRBs) offer an unparalleled method to measure the electron dispersion measures (DMs) of ionized baryons. Their distribution can resolve the missing baryon problem and constrain the history of feedback theorized to impart significant energy to the CGM and IGM. We analyze the Cosmology and Astrophysics with Machine Learning Simulations using three suites, IllustrisTNG, SIMBA, and Astrid, each varying six parameters (two cosmological and four astrophysical feedback), for a total of 183 distinct simulation models. We find significantly different predictions between the fiducial models of the suites owing to their different implementations of feedback. SIMBA exhibits the strongest feedback, leading to the smoothest distribution of baryons and reducing the sight-line-to-sight-line variance in DMs betweenz= 0 and 1. Astrid has the weakest feedback and the largest variance. We calculate FRB CGM measurements as a function of galaxy impact parameter, with SIMBA showing the weakest DMs due to aggressive active galactic nucleus (AGN) feedback and Astrid the strongest. Within each suite, the largest differences are due to varying AGN feedback. IllustrisTNG shows the most sensitivity to supernova feedback, but this is due to the change in the AGN feedback strengths, demonstrating that black holes, not stars, are most capable of redistributing baryons in the IGM and CGM. We compare our statistics directly to recent observations, paving the way for the use of FRBs to constrain the physics of galaxy formation and evolution.more » « less
- 
            Abstract We introduce the DaRk mattEr and Astrophysics with Machine learning and Simulations (DREAMS) project, an innovative approach to understanding the astrophysical implications of alternative dark matter (DM) models and their effects on galaxy formation and evolution. The DREAMS project will ultimately comprise thousands of cosmological hydrodynamic simulations that simultaneously vary over DM physics, astrophysics, and cosmology in modeling a range of systems—from galaxy clusters to ultra-faint satellites. Such extensive simulation suites can provide adequate training sets for machine-learning-based analyses. This paper introduces two new cosmological hydrodynamical suites of warm dark matter (WDM), each comprising 1024 simulations generated using thearepocode. One suite consists of uniform-box simulations covering a volume, while the other consists of Milky Way zoom-ins with sufficient resolution to capture the properties of classical satellites. For each simulation, the WDM particle mass is varied along with the initial density field and several parameters controlling the strength of baryonic feedback within the IllustrisTNG model. We provide two examples, separately utilizing emulators and convolutional neural networks, to demonstrate how such simulation suites can be used to disentangle the effects of DM and baryonic physics on galactic properties. The DREAMS project can be extended further to include different DM models, galaxy formation physics, and astrophysical targets. In this way, it will provide an unparalleled opportunity to characterize uncertainties on predictions for small-scale observables, leading to robust predictions for testing the particle physics nature of DM on these scales.more » « lessFree, publicly-accessible full text available March 20, 2026
- 
            ABSTRACT The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H i) radio two-dimensional maps to trace hot and cool gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield’ data sets comprised of both H i and X-ray maps, providing complementary information about physical CGM properties and improved inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual haloes with masses log (Mhalo/M⊙) < 12.5. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis – training on one galaxy formation model and testing on another – highlights the challenges of developing CNNs trained on a single model to marginalize over astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences on the physical properties of CGM depends on our ability to interpret these deep-learning models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
